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Battery Applications
Grid storage Medical technologies
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Battery Applications

Tesla, psdesign1/Fotolia.de, Samsung, Asus, Bosch

Grid storage Medical technologies

Devices                                                     Power tools Vehicles

Safety

Capacity – Light weight

Fast charging

Durability – Cycling stability
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Safety Issues & Degradation 

Graphite Anode

LiFePO4 Cathode

Electrolyte

Intended failure of LiPo battery Real battery

Charging
Deposition of Li at anode
Li-dendrite formation 

Internal short circuit

NewsD2 & Oak Ridge National Laboratory/Youtube.com
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Extreme Reactivity of Lithium

- Lightest solid 
element/metal

0.5 g/cm³
- One of the most

reactive elements

Li in air Li in water

Li + air Li2O, Li3N 

Li + water LiOH

Thoisoi2/Youtube.comScience247/TeacherTube.com
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Targeted Materials Development

Preventing battery failure

Local properties, morphology, structure and chemistry
of 

Li dendrites, cell parts, interfaces 

High-capacity batteries with pure-Li anode

Properties of reaction products of Li with O2, N2, H2O, …

Characterization on very small length scales 
down to the nanometer and atomic scale
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Size Scales — How small is a Nanometer?  

Å

Electronic devices       Water bear                    pFET     C60 molecule

Parts in watch Blood cell Nanoparticle          Atom

mmm µm nm pm

Quian et al, PNAS 109 (2012) 696, wikipedia.com, piaget.de

Hard X-rays
Diffraction

UVVisible lightIR
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How small is an Atom?

Hitachi/Youtube.com

1 mm

12,742 km

0,1 nm
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How to Probe the nm-Level — LM vs. TEM 

Fast electrons (0.8 c)
λdeBroglie (pm = 10-12 m)

2 pm @ 300 keV
Resolution <0.5 Å

Resolution
(Ernst Abbe)

λ=[400 nm, 800 nm] 

leica-microsystems.com

FEI Titan Themis
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Light Microscope — TEM

Bulb
Illumination

e--source

Glass lens

Magnetic
lens

Condenser

Lens
Objective

Sample
Lens

1st Image

Projector

Lens
Lens

Image
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Eye

Eye

Fluorescence
screen

Functional principle
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Probing Materials at the nm- and Atomic Level

2 nm

Ag
nano
wire

5 µm

sintered steel

organic solar cell

500 nm

200 nm graphene

crystal structure

nanoporous ceramic

1 nm

peapod 

1nm
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Probing Battery Materials at the nm-Level

1) Characterization of Li dendrites, cell parts, interfaces 
2) Systematic study of reaction of Li with O2, N2, H2O

Regular TEM sample handling in air
& TEM analyses in high vacuum

 How to investigate reactive Li and battery parts?

 How to study Li reactions (corrosion, passivation)

Low-mag TEM

500 nm

2 nm-1 Beam damage

500 nm

After attempting 
high-resolution TEM

at Troom

Transfer through air Li electron-beam sensitive!
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Probing Battery Materials at the nm-Level
FEI Titan Themis

Ø3 mm TEM sample

1) Battery disassembly
+ TEM sample preparation

in Ar environment

3) Transfer w/ 
cryo-holder

2) Cooling
with LN2

4) TEM characterization
under cryo-conditions

TEM characterization
at -196 °C (LN2)

Reduced Li reactivity
& Li mobility

(+ enhanced vacuum)

Ø3 mm 
TEM 

sample

liquid 
nitrogen

(LN2)

Li et al, Science 358 (2017) 506
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Li {110}

Mosaic-type model

Li2CO3

Li2O

Beam damage

500 nm

After attempting 
high-resolution TEM

at Troom

Characteristics of Li-metal dendrites @ -196 °C

⊙ [111]1 nm

Li[110]
Solid-

electrolyte 
interface

(SEI)

5 nm1 μm

Li et al, Science 358 (2017) 506

Single-crystalline dendrites Complex multiphase SEIPure Li core

Atomic-resolution TEM

Cryo-TEM allows for

detailed characterization of

sensitive battery materials

but we are still in vacuum

Energy-filtered TEM
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Reactions of Metallic Li by in situ TEM

Air-exposed 
Li metal

V

W
 tip
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ated
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Li+

Pristine 
Li metal

O2/N2

O2/N2

Pristine Li metal

e-

Oxide/nitride film

Li+

1) Electro-deposition 
of pristine Li

2) Exposure to 
gas environment

Environmental 
TEM (ETEM) 

with
GAS INLET

Piezo-driven biasing-holder

Li et al, Nano Lett. 17 (2017) 5171–5178
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Passivation of Li in dry N2

Diffusion-limited regime

100 nm

0 s0.5 mbar dry N2 Stable layer

Li metal

6Li + N2 2Li3N (at Li/Li3N interface)

pristine Li metal

dry N2

Reaction at 
interface

stable Li nitride

Li metal Li metal

Li metalpristine Li metal

120 s 330 s

Reaction-limited regime



B. Butz Understanding Li-ion Batteries 17

Passivation of Li in dry N2

100 nm

0 s0.5 mbar dry N2 Stable layer

Li metal

6Li + N2 2Li3N (at Li/Li3N interface)

Li metalpristine Li metal

120 s 330 s

Diffusion-limited regimeReaction
-limited 
regime
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Passivation of Li in dry N2

Video not available
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Corrosion of Li in humid environment (air)

pristine Li metal

wet N2 Reaction-limited

Li hydroxide/nitride

6Li + N2  2Li3N
2Li + 2H2O  2LiOH + H2

Li3N + 3H2O  3LiOH + NH3

Gaseous reaction products  Pores

Video not available
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Passivation in dry N2 Corrosion in air

Reactions of Metallic Li  Battery Development 
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 Novel Li-ion batteries with Li-metal anode + passivation
interlayer with high capacity and long-term cycling stability
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Lessons learned

TEM contributes to development of
safe, durable, light batteries

with high capacity & fast charging

⊙[111]1 nm

1 μm

Li[110]
Solid-

electrolyt
e interface

(SEI)

5 nm

Cryo-TEM
Nanocharacterzation of

sensitive battery materials

in situ & environmental TEM
Characterzation of reactions
of sensitive battery materials

Establishing low-
dose microscopy for

materials science
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