MAGE REM/FIB & SIMS School June/July 2020 Universität Siegen

Lecturers & Trainers

Prof. Dr. B. Butz PB-A 218, -3175 benjamin.butz@...

manuella.killian@...

Dr.-Ing. J. Müller PB-A 232, -2415 julian.mueller@...

Dr. C. Pritzel PB-A 415, -2968 pritzel@...

Dr. S. Afflerbach PB-C 007, -2968 afflerbach@...

Dr. Y. Sakalli PB-A 232, -4750 sakalli@...

M. Hepp, MSc PB-A 217, -3121 marco.hepp@...

P. auf dem Brinke PB-H 001, -4646 petra.aufdembrinke@... Stewart.Leith@...

S. Leith, MSc PB-A 426, -4646

S. Weitz, BSc PB-A 409/1, -2760 sebastian.weitz@...

Schedule and Lab Groups

	TUE 16/06/2020	WED 17/06/2020	THU 18/06/2020	
09:00 _ 10:30+	Lecture I Basic Instrumentation	Lecture III SEM Imaging	Lecture V SIMS Basics & Application	
13:00 _ 14:30+	Lecture II Electron-Matter Interaction	Lecture IV EDX / FIB		

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
•	•	•	•	•	•	•	•

Weekly lab Courses starting 23/06/2020

- TUE 09:00 12:00
- TUE 13:00 16:00
- THU 09:00 12:00

Participants List

Lab Course Time Schedule

Bring your own samples! Please clarify with Dr. Sakalli

	Schedule for Lab Courses		
	Quanta ESEM	Helios NanoLab FIB	Zeiss Ultra 55
	PB-A 0127	PB-A 0126/1	PB-H 041
	09:00 - 12:00	13:00 - 16:00	09:00 - 12:00
Group 1	TUE, 23/06	TUE, 23/06	THU, 25/06
Group 2	TUE, 30/06	TUE, 30/06	THU, 02/07
Group 3	TUE, 07/07	TUE, 07/07	THU, 09/07
Group 4	TUE, 14/07	TUE, 14/07	THU, 16/07
Group 5	TUE, 21/07	TUE, 21/07	THU, 23/07
Group 6	TUE, 28/07	TUE, 28/07	THU, 30/07
Group 7	TUE, 04/08	TUE, 04/08	THU, 06/08
Group 8	TUE, 11/08	TUE, 11/08	THU, 13/08

Locations of Instruments

🔭 Zeiss Ultra 55 FESEM Chair of Surface and material technology / Prof. Jiang Paul-Bonatz-Str. 9-11, PB-H 041 Tel: 0271 740-2497

+ ESEM Quanta FEG 250 Chemistry and Structure of novel Materials / Prof. Killian Paul-Bonatz-Str 9-11, PB-A 0217 Tel.: 0271 740-2250

✤ Helios NanoLab 600 DualBeam Micro- and Nanoanalytics / Prof. Butz Paul-Bonatz-Str. 9-11, PB-H 0126/1 Tel: 0271 740-2551

Fire Response

\rightarrow Assembly point

 In case of fire (emergency) <u>immediately</u> <u>leave the building</u> and <u>assemble at the</u> <u>assemply point</u>

- Check for your colleagues
- Wait until further notice
- The buidling may earliest be entered after clearance by the responsible fire fighters

Corona Measures

- All participants and trainers must comply with the <u>hygiene concept of the MNaF</u> as well as and the <u>general regulations by the university administration</u> (*Regulations for Research, Teaching and Administration* <u>in Transitional Operation</u>, May 8, 2020), in particular
- → Protective measures for distance and mouth-nose coverage: to enter the building please bring your own face mask; for the labs we will provide shields
- → Protective measures for diseases and risk groups: inform us in advance of any lab

 \rightarrow Research-specific supplements to the letter of May 8

- Access to buildings restricted → Pickup 10 minutes before the start of each lab (be in time!):
 - Zeiss Ultra: Entrance to the Zess building (PB-H)
 - Helios FIB & Quanta ESEM: Main entrance PB-A

Zeiss Ultra 55 FESEM

- <u>Ultra-high resolution SEM</u> for nanoscale analyses
- Topographic & chemical imaging (+ In-Lens & EsB detectors)
- Chemical analyses by EDXS

Helios NanoLab[™] 600 DualBeam[™]

- Ultra-high resolution SEM
- Topographic & chemical imaging (+ InColumn & ion detectors)
- Chemical analyses by EDXS
- Crystal structure & strain analyses by EBSD
- <u>High-resolution Ga ion column</u> for sample manipulation, TEM sample preparation, 3D tomography

ESEM Quanta™ FEG 250

₩FEI

- Low vacuum and ESEM capability

 → Analyses (without charging), e.g., of non-conductive or wet/hydrated specimens
- Topographic & chemical imaging
- Chemical analyses by EDXS
- In situ capabilities (cooling, heating)

Size Scales

Advantages of SEM

Microscopy with Electron Waves

Louis Victor Pierre Raymond Prince de Broglie, 1892 - 1987 LM is limited by the long
wave length of visible light.
→ Fast electrons: the faster the electron, the shorter the wave length.

"de Broglie" – Wavelength (postulated in 1924)

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{\sqrt{2mE_{kin}}}$$

The Fathers of SEM

1935: First SEM built by von Ardenne

Manfred von Adrenne (1907-1997)

Charles William Oatley (1904-1996)

built the first commercial SEM

The development of SEMs was fuelled by the simultaneous development of TVs (e.g. work of *Vladimir Kosmich Zworykin*)

SEM Development

1935: First SEM built by von Ardenne

Cambdrige Scientific Instrument Co. -Mark I "Steroscan" (1965): first commercial available instrument

Comparison of EM and OM

	SEM/FIB	ОМ
Resolution	high (~ 1 nm)	low (~µm)
Depth of field	large	small
Spectroscopy	S.	F
Usage	complicated and easy	complicated and easy
Costs	high	depends

OM: limited resolution and DOF

SEM: high res. and DOF

SEM / FIB Methods

Topography

Shadowing Transparency

Leg of mosquito

Chemical Imaging

Crystallographic Contrast

Polycrystalline CeO₂

Polished surface

Thermally etched surface

Crystallographic Contrast

X-ray Spectroscopy

EDXS-tomo. of superconducting material

Χ-Ray Emission γ (Εγ=hv)

EDXS

Energy-Dispersive X-Ray Spectroscopy

$$hv = E_i - E_f$$

E. Fuchs, H. Oppolzer, H. Rehme, Particle Beam Microanalysis, Fig. 2.43 Pavia et al. – Microsc. Mircoanal. 21 (Suppl 3), 2015

Focused Ion-beam Microscopy

DualBeam set up

Youtube.com, from Alexander Laqueree

Volkert and Minor (2007)

Outline

1. Scanning Electron Microscopy

1. Basic Instrumentation

- Electron source + acceleration, optics (lenses, deflectors)
- Lens aberrations Minimum probe size Resolution
- Convergence angle Depth of field (DOF)

2. Electron Sample Interaction: Primary electron — Atom — Sample

- Elastic + inelastic scattering
- Multiple scattering → Interaction volume Resolution
- Generation of backscattered electrons (BSE), secondary electrons (SE) Charging

3. Imaging Modes

- SE-imaging: topographic contrast
- BSE-imaging: density/atomic-number contrast, orientation contrast (channeling)
- Scanning transmission electron microscopy (STEM)
- Electron backscattered diffraction (EBSD)
- Advanced techniques

4. X-ray Spectroscopy

- Excitation X-rays
- Energy-dispersive (EDXS) vs. wave-length dispersive (WDXS) X-ray spectroscopy

2. Focused Ion Beam (FIB)

- Basic instrumentation: Liquid-metal Ga-ion source + ion optics
- Interaction of Ga ions with sample
- Modes of operation: Imaging (SE, secondary ions)

Milling (Nanostructuring, TEM sample preparation)

Beam-induced deposition

Basic Instrumentation

Image Formation

SECONDARY AND/OR BACKSCATTERED

after Goldstein et al., Scanning Electron Microsopy and X-ray Microanalysis (p. 102)

Image Formation

Image formation:

 <u>Scanning electron probe</u> on sample through sequence of positions (1..9)

Magnification M = L/I Scale bar!

- <u>Each measuring point:</u> (dwell time few 10 μs)
 - Signal collection
 - Amplification
 - Analog \rightarrow Digital signal

Serial image build-up by assigning digital signal to related pixel

SECONDARY AND/OR BACKSCATTERED

after Goldstein et al., Scanning Electron Microsopy and X-ray Microanalysis (p. 102)

Image Formation

Image formation:

 <u>Scanning electron probe</u> on sample through sequence of positions (1..9)

Magnification M = L/I Scale bar!

- <u>Each measuring point:</u> (dwell time few 10 μs)
 - Signal collection
 - Amplification
 - Analog \rightarrow Digital signal

Serial image build-up by assigning digital signal to related pixel

Plasmonic gold discs on wafer

Courtesy S. Madsen, Prof. R. Sinclair (Stanford Univ.)

Au discs d=100 nm/D=66 nm (SEM step size ~2,5 nm) 000000 0000000000 HFW WD Helios 10 µs 10.00 kV 4.14 µm 4.0 mm

Low-mag overview scan (SEM step size **95 nm**)

Plasmonic gold discs on wafer

Courtesy S. Madsen, Prof. R. Sinclair (Stanford Univ.)

Low-mag overview scan (SEM step size **95 nm**)

*Cathode Ray Tube – TV

http://www.fachlexika.de/technik/mechatronik/monitor.html & de.wikipedia.org

Electron Sources for SEM/TEM

W hairpin filament

LaB₆ cathode

Schottky-emitter

Cold-FEG

Thermionic emission

Field-assisted thermionic emission

Field emission

Cook et al., Ultramicroscopy 109, 403 – 412 (2009) Williams/Carter: Transmission Electron Microscopy
Principles of Electron Emission

Thermionic emission: $j_c = AT_c^2 \exp(-\phi_w / kT_c)$ (Richardson's law)

Field emission: Tunneling of electrons through the barrier which is reduced by a very strong electric field (~ 10 V/nm)

Schottky emission: strong electric field (~ 0.5...1 V/nm) reduces the effective work function for thermionic emission

from Reimer, Transmission Electron Microscopy

Electron: Wave-Particle Dualism

Electron as particle	Rest mass	$m_0 = 9.1091 \cdot 10^{-31} kg$
	Charge	$e = -1.602 \cdot 10^{-19} C$
	Kinetic energy	$E = e U = \frac{1}{2}m_0v^2 = \frac{p^2}{2m_0}$

De Broglie (1924):

$$\vec{p} = h\vec{k} = m\vec{v}$$
 (as for light quanta)
Planck constant $h = 6.626 \cdot 10^{-34} Js$
with $|\vec{k}| = \frac{1}{\lambda}$ \longrightarrow $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_0E}}$ Electron as wave

Electron Wavelength in TEM

Relativistic correction of de-Broglie relation: $\lambda = -\frac{1}{\sqrt{2}}$	$\frac{h}{2m_0E} \cdot \frac{1}{\sqrt{1+E}}$ $E_0 = m_0c^2 = 0$	1 2/(2E ₀) = 511keV
2 m/m_o	c = 2.997 Acceleration voltage	$3.10^8 \frac{m}{s}$
	1 kV	38.8 pm
v/c	30 kV	6.9 pm
	100 kV	3.7 pm
	200 kV	2.5 pm
SEM 0 0.1 0.5 MeV 1.0	300 kV	2.0 pm
1-30keV medium-voltage TEM high-voltage TEM	1MV	0.9 pm
Biological TEM (Material Science) 800keV – 1.2MeV 80-120keV 200-400keV	r, Transmission Electr	on Microscopy

*Deflection in a Magnetic Field

from Oppolzer, Rehme, Particle Beam Microanalysis

*Deflection in a Magnetic Field

Magnetic fields can be exploited for separating particles with respect to their mass, charge and energy! (but not independently)

Electromagnetic Lens

B constant:

Focal length can be controlled by lens current

Reimer, Transmission Electron Microscopy

Scanning Electron & Ion Microscopy

Lens Equations

The focal point F_{a2} of rays with larger angles of divergence a_2 (off-axis rays) is closer to the lens than for paraxial rays (F_{a1})

$$\boldsymbol{d}_{s} = \frac{1}{2}\boldsymbol{C}_{s} \cdot \boldsymbol{\alpha}^{3}$$

Electrons with different energies E and DE, i.e. different wavelength (represented by color), are focused at different focal points F_E and F_{E+DE} .

$$d_c = C_c \cdot (\Delta E / E) \cdot \alpha$$

Diffraction Error

The limitation of the wavefront by the lens edge or aperture results in an intensity distribution (Airy disc) in the focal plane caused by diffraction.

$$d_d = 0.61 \cdot (\lambda / \alpha)$$

Optimum Probe Size

Relationship between probe size d_0 , divergence $lpha_p$, and gun brightness eta

$$\boldsymbol{d}_{0} = \frac{2}{\pi\alpha_{p}} \cdot \sqrt{\frac{\boldsymbol{I}_{p}}{\beta}}$$

Lens aberrations lead to further beam broadening

$$d_0^{'2} = d_0^2 + d_d^2 + d_s^2 + d_c^2$$

$$\boldsymbol{d}_{0}^{'2} = \boldsymbol{d}_{0}^{2} + \frac{(0.61 \cdot \lambda)^{2}}{\alpha_{p}^{2}} + \frac{1}{4}\boldsymbol{C}_{s}^{2} \cdot \alpha_{p}^{6} + \left[\boldsymbol{C}_{c} \cdot \frac{\Delta \boldsymbol{E}}{\boldsymbol{E}}\right]^{2} \cdot \alpha_{p}^{2}$$

There is an optimum beam divergence α_{opt} for minimum probe size!

Optimum Probe Size

Find optimum convergence angle α_{opt} so that the probe size is minimized! Often, only the spherical aberration and the diffraction error have to be considered:

from Goldstein et al., Scanning Electron Microsopy and X-ray Microanalysis

Scanning Electron & Ion Microscopy

Two-fold Astigmatism

Perfect lens

Reimer: Transmission Electron Microscopy

Scanning Electron & Ion Microscopy

Stigmator

Fields & forces seen by the electron beam

Fields

Forces

Beam shape before and after correction

Microscope Alignment — Aberrations to be adjusted

Defocus

Beam shapes on the sample

a) initial situation

b) underfocus

d) corrected

from Goldstein et al., Scanning Electron Microsopy and X-ray Microanalysis

Scanning Electron & Ion Microscopy

Resolution Definition in SEM

- Rayleigh criterion Separation of point-like objects (well-separated, sub-nm small NP?)
- 2. Edge resolution Intensity distribution across sharp edges (e.g., Au on C)

SE imaging d₀ ~ resolution (SE imaging mode)

in L. Reimer, Scanning Electron Microscopy (p. 53)

Resolution Definition in SEM

Rayleigh criterion
 Separation of
 point-like objecticable
 (well-spot ated,
 sub-nm small NP?)

2. Edge resolution

Intensity distribution across sharp edges (e.g., Au on C)

SE imaging d₀ ~ resolution (SE imaging mode)

in L. Reimer, Scanning Electron Microscopy (p. 53)

Depth of Field (DOF)

Alloy particles

Light Microscopy

Why do we have such an incredible **depth of field (DOF)** in SEM images?

DOF

WD = 15 mm d_{Ap} = 600 μ m

Increasing DOF

WD = 15 mm $d_{Ap} = 100 \ \mu m$

WD = 39 mm $d_{Ap} = 100 \mu m$

≠ 15 m

DOF

Electron Microscopy and X-Ray Microanalysis (p. 134)

in L. Reimer, Scanning Electron Microscopy (p. 50)

Scanning Electron & Ion Microscopy

DOF – Condenser Aperture

Gaining high DOF at an expense of beam current

DOF – Working Distance

Dynamic Focus

(p. 64)

in Zeiss, Supra Handbuch (2004, p. 220)

Electron Sample Interaction

[sciencefocus.com]

Signals

FIB/SEM Chambers — Detektors

Scanning Electron & Ion Microscopy

Interaction volume — Distribution of PE in Sample

Trajectories of 500 electrons on Si (calculated with Casino):

 α_{P} = 10 mrad, d₀ = 1 nm, trajectories rainbow-colored depending on the energy of the electron

Electron Scattering Processes

Elastic scattering

No detectable energy transfer

 Coulomb interaction with the attractive potential formed by the atomic nuclei of the target material

Inelastic scattering

- Phonon scattering
- Plasmon scattering
- Inner shell excitation

Energy transfer to the specimen

- \rightarrow Excitation of lattice vibrations (contributes to sample heating)
- \rightarrow Excitation of collective oscillations of the conduction electrons (in metals)
- \rightarrow Ionization of inner shell electrons
 - emission of X-rays, Auger-Electrons
- Inner/inter-band transitions \rightarrow Ionization of inner shell electrons

emission of light (Cathode luminescence)

*Electron Scattering Processes

Elastic scattering

No detectable energy transfer

BSE

• Coulomb interaction with the attractive potential formed by the atomic nuclei of the target material

Inelastic scattering

Plasmon scattering

- Inner shell excitation
- Inner/inter-band transitions ightarrow

emission or nght (Cathode luminescence)

ΔE: few eV

Elastic Electron Scattering

Elastic scattering of the primary electrons (PE) at the atomic nuclei of the target material or, more precisely, at the coulomb potentials of the positively charged nuclei:

$$\vec{F}_{\text{Coulomb}} = -\frac{e^2 Z}{4\pi\varepsilon_0 r^2} \vec{u}_r$$

= attractive force from the (unscreened) nucleus

Screening by electron cloud reduces the force!

Effect of Screening

Atomic Scattering Amplitude

Ionization

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 52)

Total Scattering Cross-Section

Probability of electrons being scattered

Total scattering cross-section

(takes all possible inelastical processes into account)

Unscattered intensity

$$\sigma_{t} = \sigma_{el} + \sigma_{inel} = 2\pi \int_{0}^{\pi} \left(\frac{d\sigma_{el}}{d\Omega} + \frac{d\sigma_{inel}}{d\Omega} \right) \sin \theta d\theta$$

$$I(t) = I_{0} \exp(-N\sigma_{t} t) = I_{0} \exp(-t/\Lambda_{t})$$
N Number of atoms per volume
$$I_{0} \text{ Incident beam current}$$

$$\Lambda_{t} = \frac{1}{\sigma_{t} N}$$

- Number of atoms per volume
- Incident beam current **I**0
- L Mean-free-path length

Total mean-free-path length in *nm*

	С	AI	Cu	Ag	Au
5 keV	2.3	2	1.1	1.0	0.9
10 keV	4.5	4	2.0	1.7	1.3
20 keV	9	8	3.5	2.8	2.1

in L. Reimer, *Scanning Electron Microscopy* (p. 83)

Monte-Carlo Simulation of Interaction Volume

For each electron iterative calculation of ist trajectory using Monte-Carlo methods:

- Propagation of electron depending on its energy and the material – free path length s_i
- After propagation calculation of scattering event (scattering angle + energy loss, based on σ_{el} , σ_{inel})
- Respective correction of energy + momentum
- Repetition until E < ϵ or escape from sample

Monte-Carlo simulation software:

<u>DTSA-II (NIST)</u> (02/2018) <u>Casino</u> (02/2018)

Trajectories + X-ray spectra

Fig. 3.30. Sequence of scattering processes in a Monte Carlo simulation with s_i = free path lengths, x_i, y_i, z_i . = coordinates of electron at the *i*th collision, θ_i and χ_i = scattering and azimuth angles after the *i*th collision

in L. Reimer, *Scanning Electron Microscopy* (p. 116)

Primary Energy – Penetration Depth

Target material: Iron

The higher the primary energy is, the larger is the penetration depth

Atomic Number – Penetration Depth

High Voltage: 30 kV

The higher Z, the smaller is the penetration depth

Silver (Z=47)

Uranium (Z=92)

N

-0.5 μm
Interaction Volume: Visualization

BSE / SE Yield

Trajectories of 500 electrons on Si (calculated with Casino):

 α_{P} = 10 mrad, d₀ = 1 nm, trajectories rainbow-colored depending on the energy of the electron **Outside of the sample:** PE BSE SE -

Backscattering coefficient	$\eta =$	number of backscattered electron	$\frac{S}{I} = \frac{I_{BSE}}{I_{BSE}}$
		number of primary electrons	I_{PE}
SE yield	δ =	number of secondary electrons	
		number of primary electrons	I_{PE}

BSE / SE Yield

in L. Reimer

BSE — Chemical Contrast

Cu 29 Nb 41 Sn 50 Ta 73

Bronte Cu Ta Nb₃Sn superconductor 2 µm wire Nb Nb₃Sn Ероху Bronze 100 µm

Electron Energy Distribution

Cut-off at the energy of the incident electrons E₀

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 50)

Backscattering Coefficient vs. ϕ + Z

BSE Energy

Energy loss by inelastic collisions before the BSE leave the sample More pronounced for light elements (relatively)

But backscattering coefficient larger for heavier elements

in Fuchs, Oppolzer, Rehme, *Particle Beam Microanalysis* (p. 46)

BSE Imaging – Resolution

The resolution in BSE imaging is limited by the escape area of BSE electrons (~R)

Particular structures can be imaged with a better resolution when their

topographic or material contrast significantly exceeds

the background signal of BSE from the whole interaction volume.*

(e.g., high-Z regions in/on low-Z matrix, polycrystalline material: change in crystallographic orientation)

- The lower E₀ the smaller is the escape area!
- The higher the local variations in Z the better is the resolution

Merli, Nacucci, Ultramicroscopy 50 (1993), pp. 83

* L. Reimer, Scanning Electron Microscopy (p. 144)

BSE Imaging – Summary

Dependency of η on

Atomic number Z

Angle of incidence Crystallographic orientation in polycrystals

Chemical/compositional contrast

Topographic contrast Channeling contrast

Drawbacks

• Limited resolution in BSE imaging due to interaction of PE with sample

Escape area of BSE >(>) Illuminated area (d₀)

 Highly energetic BSE cannot be electrostatically deflected towards any detector like lowenergy SE

Limited solid angle covered by available BSE detectors

Generally lower count rates than in SE imaging

SE Signal

SE are produced in the whole interaction volume (E < 50 eV)

Due to the low energy only SE with E > Φ_w (Work function) produced in the topmost layer (~5–50 nm) may escape from the sample. Final kinetic energy is reduced by Φ_w !

(for AE it can be even less)

BSE: the escape depth is much higher

from http://www4.nau.edu/microanalysis/Microprobe/NewOverview.html

Contributions to SE Signal

Contributions to SE Signal

Artificial contributions to SE signal:

- SE 3 Unwanted SE excited by BSE
- SE 4 Stray electrons (aperture)

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 106)

Contributions to SE Signal

Artificial contributions to SE signal:

- SE 3
- SE 4

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 106)

SE Imaging – Resolution

Despite the expansion of the interaction volume the **resolution in SE imaging is of the order of the initial beam size (d**₀**)** if the contribution of SE 1 electrons is sufficient.

* L. Reimer, Scanning Electron Microscopy (p. 144)

SE Imaging – Summary

Dependency of δ on

Angle of incidence(Work function Φw)Crystallographic orientation in
polycrystals(Local) electric potentialInteraction of local magnetic
potential with low-energetic SE

Everhart-Thornley detector:

SE are "collected" by attractive potential → High count rates!

Topographic contrast

(Chemical contrast)

Channeling contrast

Voltage contrast

(Contrast due to charging)

Magnetic contrast

Drawbacks

- No real Z-contrast
- <u>Charging</u>: Low-energetic electrons are strongly deflected by local electric potentials (Charging) + Strong enhancement of SE yield (negative charging) leading to oversaturation

How to Prevent Charging — Tailoring Landing Energy

in P. Schmidt, *Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse A* (p. 160)

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 114)

Sample Charging

Biological specimen

Lithographic structures on glass substrate

Scanning Electron & Ion Microscopy

HV WD curr HFW mag □ 5.00 kV 3.7 mm 0.17 nA 128 µm 2 000 x ——— 50 μm —— Helios NanoLab 600

.

Example of current balancing

Non-conducting cellulose filter paper at different energies:

- Uncoated cellulose
 Region coated with silver paste
- → No charging at ~1.65 keV
- → Almost not contrast because $\delta + \eta = 1$, where the local beam current is constand

Dr. M. Hummelgård Mid Sweden University Note via LinkedIn

1.2 kV

1.5 kV

1.6 kV

Example of current balancing

Non-conducting cellulose filter paper at different energies:

- Uncoated cellulose
 Region coated with silver paste
- → No charging at ~1.65 keV
- → Almost **not contrast** because $\delta + \eta = 1$, where the local beam current is constand

Dr. M. Hummelgård Mid Sweden University Note via LinkedIn

How to Prevent Charging — Sample Coating/Contacting

- Au, Pt (finer grain size) not optimal for EDXS
- C-coating
 - → Contamination, additional plasma cleaning may be needed

How to Prevent Charging — Beam Current & Fast Scanning

How to Prevent Charging — Alternative Techniques

- Charge compensation by gas injection (locally with a gas capillary, or environmental/variable-pressure SEM)
- e⁻-flooding for positive charging (e.g., during FIB milling)

Kleindiek Nanotechnik

Carl Zeiss AG/Youtube

Imaging Modes

Megaphragma mymaripenne is a microscopically sized wasp. [wikipedia]

Electron Energy Distribution

Cut-off at the energy of the incident electrons E₀

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 50)

Detectors I

Retractable BSE detector

in Zeiss, Supra Handbuch (2004)

Detectors II (Zeiss)

 $E_0 \leq 20 \text{ kV}$ Beam Booster:

EsB detector (Energy-Selective BSE detector) (BSE)

- +8 kV in electron column
- deceleration of PE by electrostatic potential of objective lens

in Zeiss, Supra Handbuch (2004)

Everhart-Thornley Detector (ETD)

Functional Principle

- Coupling of SE/BSE current into photomultiplier

 (double signal conversion: initial electron → light → electron)
- Multiple signal amplification (x10⁶):

acceleration of initial electrons + SE generation at dynodes

in L. Reimer, Scanning Electron Microscopy (p. 174)

Everhart-Thornley Detector (ETD)

Everhart-Thornley detector (ETD) used for SE or BSE imaging

Positive grid

- <u>Attraction</u> of SE (low energy)
- potential
- Collection efficiency depends on applied voltage

- BSE in respective solid angle detected as well

Negative grid potential

- Detection of BSE which leave which leave the sample in the direction of the E-T detector

- Repulsion of SE

Asymmetric arrangement of beam-sample-detector

*Zeiss naming It doesn't exclusively collect SE 1!

in Zeiss, Supra Handbuch (2004)

Topographic imaging

Edges Local inclination

Glass fibre reinforced plastic

Illumination

Topographic Contrast (BSE)

in P. Schmidt, *Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse A* (pp. 148+167)

in L. Reimer, Scanning Electron Microscopy (p. 210)

Topographic Contrast (BSE/SE)

Mikrobereichsanalyse A (pp. 148+167)

in L. Reimer, Scanning Electron Microscopy (p. 210)

Topographic Contrast (BSE/SE)

Snail shell

in Zeiss, Supra Handbuch (2004)

Edge Contrast (SE)

Edge contrast

Excessive intensity increase due to high SE yield

- <u>At an edge</u>: Large surface with respect to IV (1)
- Scattering of BSE into adjacent regions
 - \rightarrow High probability of SE 2 generation (2)

The higher E₀ the wider is the intensity increase!

in P. Schmidt, *Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse A* (pp. 164+165)

Transparency

The larger IV (high E₀) the more "transparent" does the sample appear: contributions of SE 2 and SE 3 Localized surface information at low E₀

in L. Reimer, Scanning Electron Microscopy (p. 215)
Retractable BSE Detectors

Retractable <u>annular</u> or <u>quadrant</u> BSE detector used for BSE imaging

Detection of strongly backscattered electrons

Robinson-type szintillator detector

Symmetric arrangement around the optical axis

Chemical contrast

Solid-state silicon detector

in Zeiss, Supra Handbuch (2004)

Retractable BSE Detector

in L. Reimer, Scanning Electron Microscopy (p. 224)

Annular BSE Detector

Annular BSE detector

Contrast contributions caused by varying topography minimal as long as inclination smaller than ~ 30°-40° **Flat surface optimal** (polished sample)

Similar propability of BSE emission in covered solid angle (independent on surface inclination)

Similar Intensity

Pure Chemical Contrast

Sn-Pb alloy

- Sn dark regions
- Pb bright regions

in P. Schmidt, Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse A (pp. 149)

Pure Chemical Contrast

Cleaved SiO₂/Ta₂O₅-multilayer (BSE: SiO₂ dark, Ta₂O₅ bright)

Material contrast + surface topography contrast

Pure material contrast

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 110)

Quadrant BSE Detector

Quadrant BSE detector

Normal mode

Minimal topography contrast (as annular BSE detector)

Topographic mode

Signal inversion of part of the **quadrants (net signal for inclined surfaces)**

Gain of topographic contrast

Scanning Electron & Ion Microscopy

Chemical contrast (annular BSE detector)

Topographic contrast

(Signal inversion of selected quadrants)

(e.g., (Q3+Q4)-(Q1+Q2))

in Zeiss, Supra Handbuch (2004)

Topographic vs. Chemical Contrast

Polished silver-soldered joint (Ag-rich: bright, Cu-rich: dark)

Goodhew, Humphreys, Beanland, Electron Microscopy and Analysis, S.147

Topographic vs. Chemical Contrast

Polished silver-soldered joint (Ag-rich: bright, Cu-rich: dark)

Goodhew, Humphreys, Beanland, Electron Microscopy and Analysis, S.147

BSE Imaging – Resolution

The resolution in BSE imaging is limited by the escape area of BSE electrons (~R)

Particular structures can be imaged with a better resolution when their

topographic or material contrast significantly exceeds

the background signal of BSE from the whole interaction volume.*

(e.g., high-Z regions in/on low-Z matrix, polycrystalline material: change in crystallographic orientation)

- The lower E₀ the smaller is the escape area!
- The higher the local variations in Z the better is the resolution

* L. Reimer, Scanning Electron Microscopy (p. 144)

Lessons learned

SE imaging

- Excellent resolution (beam diameter)
- **Topography contrast:** inclined surfaces are brighter
- Edges appear brighter!
- Changing the ETD grid voltage, one can switch between topography contrast (SE) and chemical contrast (BSE)

BSE imaging

- Resolution ↔ Size of interaction volume
- Topographic diminishes up to medium inclinations
 Even "rough" surfaces exclusively show chemical contrast
- Excellent chemical resolution of better than 1% Z-difference

*Detectors II (ZEISS)

In-lens SE detector

 $E_0 \leq 20 \text{ kV}$ Beam Booster:

In-lens EsB detector (Energy-Selective BSE detector) (BSE)

- +8 kV in electron column
- deceleration of PE by electrostatic potential of objective lens

in Zeiss, Supra Handbuch (2004)

*Zeiss GEMINI[®] Column

- <u>Beam booster</u> ($E_0 \le 20 \text{ kV}$)
- + Magnetic/electrostatic objective
- +8 kV in electron column (U_B)
- Deceleration of PE by electrostatic potential of objective lens

Minimized influence of stray radiation on PE even at low $E_0 \rightarrow$ High resolution

High efficiency of In-lens SE detector due to attraction of SE

- U_{ex} Extraction voltage
- U_{pe} Primary beam voltage
- U_B^{BC} Booster voltage
- U_F EsB filtering grid voltage

*Magnetic / Electrostatic Objective

Beam booster

far-reaching electrostatic potential of objective lens (decelerating impact on PE, **SE accelerated towards column**)

High efficiency of In-lens SE detector due to collection of SE

*Separation of BSE/SE

Focussing impact on SE is higher than on BSE

Stronger deflection of SE in electron column

*Separation of BSE/SE

BSE

Lower cross-over of SE in column

Angular separation of BSE and SE

*In-lens SE vs. EsB Detector

in Zeiss, Supra Handbuch (2004)

*In-lens SE vs. EsB Detector

in Zeiss, Supra Handbuch (2004)

-0 V

Grid potential Max. energy loss

-100 V 1.17 keV

-1177 V 100 eV in Zeiss, Supra Handbuch (2004)

-0 V

Grid potential Max. energy loss

-100 V 1.17 keV

-1177 V 100 eV in Zeiss, Supra Handbuch (2004)

-0 V

Grid potential Max. energy loss

-100 V 1.17 keV

-1177 V 100 eV in Zeiss, Supra Handbuch (2004)

-0 V

Grid potential Max. energy loss

-100 V 1.17 keV

-1177 V 100 eV in Zeiss, Supra Handbuch (2004)

-0 V

Grid potential Max. energy loss

-100 V 1.17 keV

-1177 V 100 eV in Zeiss, Supra Handbuch (2004)

High grid potential with respect to E₀ (low-loss BSE imaging (II-BSE))

Enhanced chemical contrast, minimized topographic contributions

Better resolution due to less interactions

-0 V

Grid potential Max. energy loss

-100 V 1.17 keV

-1177 V 100 eV in Zeiss, Supra Handbuch (2004)

Rock containing silicated, oxides, mica, feldspars (+rare elements)

<u>II-BSE:</u> Low E_0 smaller interaction volume \longleftrightarrow Reduced chemical averaging

STEM

Scanning transmission electron microscopy (STEM)

- Detection of transmitted electrons
- Sample thickness < 100nm @30 kV (e.g., TEM samples)
- STEM detector with various sectors
 - bright-field (BF),
 - annular dark-field (ADF)
 - high-angle annular DF (HAADF)

Parameter to adjust covered solid angles: camera length

Small angles

information

(Orientation

contrast)

Crystallographic

http://www.cfn.kit.edu/1004.php

FEI STEM Detector

BF, DF: mass-thickness, Bragg/orientation contrast **HAADF:** chemical contrast

Various opportunities to combine sectors, e.g. crystallographic (orientation) analysis — **texture analysis**

FEI Helios User's Guide

STEM Sample Holder

FEI Helios User's Guide

http://www.utdallas.edu/~rar011300/SEM/Scanning%20Electron%20Microscope%20Operation.pdf

IV: Bulk vs. Thin Sample

IV: Z-dependency

CIGS Solar Cell — STEM in SEM vs. TEM

Characterization TEM lamellae in FIB-SEM by STEM

Microstructural, (structural), chemical analysis of TEM-samples /FIB lamellae on the nm scale!

BF-STEM image (Helios @30 kV)

- Unscattered electrons
- Serial image formation (BF-STEM detector)

Bright-field TEM image (Titan @200 kV)

- Selection of undeflected electrons propagating on optical axis
- Parallel image formation (CCD camera)

CIGS Solar Cell — **STEM in SEM** vs. STEM in TEM

Characterization TEM lamellae in FIB-SEM by STEM

HAADF-STEM image (Helios @30 kV)

- Electrons scattered in large angles
- Serial image formation (DF-STEM detect

ADF-STEM image (Titan @200 kV)

- Selection of small-angle scattered electrons
- Serial image formation (DF-STEM detector)

Channeling Contrast

Electro-polished Cu (tilted through 1°)

Dependency of δ/η on PE incidence with respect to local crystal orientation (lattice planes)

Visualization of

- grains in polycrystals
- lattice defects (twins)
- surface-near dislocations

in P. Schmidt, *Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse A* (p. 176)

in L. Reimer, Scanning Electron Microscopy (p. 226)

Kinematic Theory

Bragg's law

Constructive interference of elementary waves

Wave length Distance between planes (h,k,l) d_{hkl} Bragg angle

λ

υ

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 15)

Electron Backscatter Diffraction (EBSD)

- Electron backscatter diffraction (EBSD)
- ①Elastic scattering event +②Bragg diffraction → Diffraction pattern

2d Mappings

Goodhew, Humphreys, Beanland, *Electron Microscopy and Analysis*, p. 152

Applications

- Grain size analysis
- Strain analysis
- Orientation determination for
 - analysis of global/local texture
 - anisotropic growth
 - crystal rotation (deformation, recrystallization)
 - misorientation
- Substructure analysis (twinning)
- Grain boundary characterization
- Phase identification (in combination with analytical analysis)
- Phase distribution
- In situ phase transformations
- Recrystallization

Optimal surface quality essential

Electro-chemical polishing Ion-beam preparation Healing by thermal treatment
FIB-SEM for EBSD

Au wires on circuit

http://www.oxfordinstruments.com/Campaigns/microanalysis/ebsd/ebsd-aplications/

EBSD — Lessons learned

- Local crystal structure information
- EDSB resolution on the sub-100 nm level
- Channeling contrast/EBSD only with excellent sample-surface quality
- Sophisticated data analysis neede (pattern recognition, phase identification/ strain anlysis, data analysis)

*Voltage Contrast Imaging

Integrated logic circuit

★+12V (reduced SE signal)

Passive voltage contrast for static testing of circuits

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 364)

*Resistive Switching of Percolated NW network

*Magnetic Contrast Imaging

Type-1 magnetic contast (SE)

- Deflection of SE by magnetic stray field \vec{B}
- E-T at low attractive potential

 $\vec{F}_{Lorentz} = -e\vec{v} \times \vec{B}$

Contrast: varying fraction of SE towards E-T

BaFe₁₂O₉ single crystal

in Fuchs, Oppolzer, Rehme, *Particle Beam Microanalysis* (p. 133)

in L. Reimer, Scanning Electron Microscopy (pp. 291)

*Electron-Beam Induced Current

Electron beam induced current (EBIC)

- Generation of electron-hole pairs carriers by electron impact ($\overline{E}_i[eV]$)
- Charge separation in internal field regions (e.g., pn-junctions, Schottky-barriers)
 Local charge-collection current (I_{cc}) depends on charge generation and separation efficiency

In Goodhew, Humphreys, Beanland, Electron Microscopy and Analysis, p. 153

*Recombination at Defects

Plan-view of burried pn-junction (P in-diffusion): near-surface dislocations

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 131)

Energy Dispersive X-ray Spectroscopy (EDXS)

EDXS-tomo. of superconducting material

Pavia et al. – Microsc. Mircoanal. 21 (Suppl 3), 2015

Analytical Techniques (OV)

Primary Process

Ionization by high-energetic PE

EELS (TEM) Electron Energy-Loss Spectroscopy (△E)

E. Fuchs, H. Oppolzer, H. Rehme, Particle Beam Microanalysis, Fig. 2.43

γ (E γ =h ν)

Secondary Processes

AE

Auger-Electron Emission

KL₂L₃

X-Ray Emission

EDXS/WDXS

Energy-/wavelengthdispersive X-Ray Spectroscopy

$$h\nu = E_i - E_f$$

X-ray Energies — Moseley's Law

Fig. 10.6. Demonstration of the Moseley law – linear relation between $E_x^{1/2}$ and Z – by plotting the ionization (edge) energies E_I , (I = K, L₁, L₂, L₃) (o o o) and the quantum energies $E_x^{1/2}$ of the x-ray lines (• • •) against the atomic number Z (values for E_x in keV on the left-hand ordinate)

keV^{1/2}

E x 1/2 -

40

Eb

7

60

20

EK - 80

80

Epot

100

20

Z-dependency of X-ray energies $hv = E_i - E_f$ **K-series** (K α n=2, K β n=3) $E_{n,K} = E_n - E_1 = -13, 6eV(Z-1)^2 \left(\frac{1}{n^2} - 1\right)$

L-series (n=3,4)

$$E_{n,L} = E_n - E_2 = -13,6eV(Z - 7.4)^2 \left(\frac{1}{n^2} - \frac{1}{4}\right)$$

Moseley's law Screening constant

$$E_{n,K} \propto (Z - \sigma)^2$$

in L. Reimer, Scanning Electron Microscopy (p. 386)

30

10

5

Element-Specific X-Rays

in D. Williams, B. Cater, , transmission Electron Microscopy (p. 629)

Deconvolution of Peaks

Solution:

- \rightarrow Wave-length dispersive spectroscopy (WDX, see later)
- → Digital deconvolution (implemented in commercial software)

in D. Williams, B. Cater, , transmission Electron Microscopy (p. 631)

Si(Li)-EDXS Detector

Efficiency depends on X-ray energy

- Low energy: absorption (window)
- <u>High energy</u>: penetration through sensor

Energy resolution ~125 eV (@Mn Ka 5,9 keV)

Amptec

Si(Li)-EDXS Detector

Li-doped Si-Crystal

- 3,8 eV per e⁻/h⁺-pair
- Charge separation by electrical field
- Number of pairs proportional to energy of incoming X-ray

Energy resolution ~125 eV (@ 5,9 KeV)

in Fuchs, Oppolzer, Rehme, Particle Beam Microanalysis (p. 238)

Silicon Drift Detector (SDD)

Artifacts

in Goldstein et al., Scanning Electron Microscopy and X-Ray Microanalysis (p. 231)

*X-ray Microprobe Instrument

Jeol JXA-8100 at WW2 (WTM) with five wavelength dispersive spectrometers (**X**)

http://www.uni-stuttgart.de/imi/institut/ausstattung.html

*EDXS vs. WDXS: Energy Resolution

*EDXS vs. WDXS

	EDXS	WDXS
Energy resolution	~ 125 eV @ Mn Ka (5.9 keV), <65 eV @ C Ka, depends on X-ray energy	5 - 10 eV (depends on crystal)
Collection efficiency Beam current	covered solid angle Si(Li) ~0.1 sr, up to >1 sr for large-area SDD + energy-dependent detector efficiency minimal 10 ⁻¹⁰ A	covered solid angle ~0.001 sr minimal 10 ⁻⁸ A
Spectral range	0-40 keV (Dispersion 20 eV/channel) Spectral overview	Limited by used crystals — Separate measurement of each interested emission line
Detection limitation	0,1 % (depends on elements, geometry, count rates)	100 ppm or even better
Data treatment	Complicated evaluation (Peak separation, background correction)	Often linear background correction
Spectral artifacts	Escape peaks, pulse pileup, scattering, peak overlap, window absorption (contamination)	Rare, second-order reflections
Samples	Topological (rough) surfaces as well (problematic quantification)	Polished surface for optimal focussing of X-rays

Essential Questions

<u>Generation</u>

- Where do the X-rays come from?
- How probable is the ionization of an atom by electron impact?
 Ionization cross-sections
 - How probable is the emission of an element-specific X-ray?
 - Fluorescence yield

Detection

• How probable is the detection of such X-ray by the detector system?

• Absorption, Fluorescence, Detector efficiency

Interaction volume: X-Ray Generation

Due to progressive energy loss along PE trajectories, the effective volume (part of the whole IV) for ionization (X-ray generation) of specific element (shell) depends on E_0 and E_c

- Different elements A, B ($E_{C,A} \neq E_{C,B}$) \rightarrow different volumina probed!

Geometrical Effects

Resolution & Geometric Effects

Cu L 0.93 keV

Nb L 2.16 keV

Much better EDXS resolution at lower primary energy → Adapt HT accordingly!

Scanning Electron & Ion Microscopy

168

K-shell Ionization Cross-Section

D.B. Williams, C.B. Carter, Transmission Electron Microscopy (Fig. 4.4)

K-shell Ionization Cross-Section

M.R. Talukder, S. Bose, S. Takamura, Int. J. Mass Spectrom. 269 (2008) 118–130

Bulk — Matrix effects (ZAF)

Z Atomic number effect

PE loose energy the deeper they penetrate into the sample. The mean loss of energy depends on the average atomic number of the target material. As a result the X-ray production depends on the depth below the surface (depth-distribution function $\Phi(z)$).

A X-Ray absorption

Some of the X-ray quanta produced in the sample are absorbed on their path toward the surface, depending on path length through sample

F Fluorescence

X-rays of higher energy can produce X-rays of lower energy by fluorescence

$$\frac{C_i}{C_{(i)}} = [ZAF]_i * \frac{I_i}{I_{(i)}} = [ZAF]_i * k_i$$

Amorphous SiO_2 (Si_{0.33}O_{0.66})

*Quantitative Analysis

 Quantitative analysis: What is the local concentration of the present elements?

- **Background correction** (empirical, linear, Top-Hat filtering)
- Determination of net intensities (multiple peak fitting, deconvolution)
- Check residual spectrum!
- Selection of feasible emission lines
- Quantification by theoretical approach (ionization cross-section, X-ray yield, detector efficiency, etc.) or reference material (k-factor)

Amorphous SiO_2 (Si_{0.33}O_{0.66})

Spectrum pre-processing:

- Peak identification
- Energy calibration
- Background correction
- Extraction of net intensities (fitting)

Amorphous SiO_2 (Si_{0.33}O_{0.66})

Spectrum pre-processing:

- Peak identification
- Energy calibration
- Background correction
- Extraction of net intensities (fitting)

Amorphous SiO_2 (Si_{0.33}O_{0.66})

Spectrum pre-processing:

- Peak identification
- Energy calibration
- Background correction
- Extraction of net intensities (fitting)
 - O-K 10380 counts
 - Si-K 20320 counts

Amorphous SiO_2 (Si_{0.33}O_{0.66})

Spectrum pre-processing:

- Peak identification
- Energy calibration
- Background correction
- Extraction of net intensities (fitting):

O-K 10380 counts Si-K 20320 counts

Quantification

Element	Atomic %	Correction
О(К)	63.90	0.49
Si(K)	36.09	0.92

Focused Ion Beam (FIB)

Focused Ion Beam (FIB)

Dual Beam set up

FIB functionality

F. Ernst, Case Western University

Motivation - fields of application

Cross sectioning

Organic solar cell device

In situ testing (i.e. micromechanics)

Layered crystal (VSe₂)

FIB

TEM sample preparation

Compressed Au microparticle

Further fields of application (FIB tomography, prototyping & nanofabrication, micromanipulation, ...)

FIB tomography of zeolite particle
Instrumentation – FIB source

http://www.hindawi.com/journals/ijae/2011/361215.fig.002.jpg

Scanning Electron & Ion Microscopy

Instrumentation - optics

E-beam column	Fundamental differences:	Ion-beam column
Field emission gun (FEG)	source	Liquid metal ion souce (LMIS)
electrons	probe	lons (much heavier)
Electromagnetic lenses	beam deflection	Electrostatic lenses

Instrumentation – electro-magnetic vs. electrostatic lenses

Scanning Electron & Ion Microscopy

Instrumentation – Ion Pathway

Source: FEI Manuals

\rightarrow worn out aperture

Octupole

 \rightarrow handling astigmatism, deflection

Detection of secondary ions (SI)

In chamber electron & ion (ICE) detector:

- Detector **based on ETD principle** (scintillator \rightarrow light pipe \rightarrow PMT)
- Conversion electrode between grid and scintillator enables secondary electron (SE) or secondary ion (SI) detection
- Signal chain: secondary ions → converted to secondary electrons → generate photons on the scintillator → generate electrons in the photomultiplier → preamplifier → video signal

SI mode

Source: FEI, ICE Detector Presentation

SE mode

FIB imaging resolution

In principle not limited by diffraction, but by several other parameters:

- Lens aberrations
- Space Charge Effects
- Source Size
- Interaction volume

Gallium FIB resolution: ~4nm

Ultimate limit: signal to noise ratio before destroying the information in a sample

Orloff, Phys. Fac. Pub. And Pres., 1996

Scanning Electron & Ion Microscopy

Coloumb interactions

In practice one of the biggest problems is **Energy spread** and **beam broadening** due to **Coloumb repulsion** between ions.

- High current densities near the source ~ 10⁶ A/cm²
- Increased energy spread and virtual source size

• Increased contribution of the chromatic abberation

1.45 1.4 $E \models 3 \text{ keV} \pmod{A}$ 1.35 d_{RPS}/d₅₀ 1.3 E = 30 keV1.25 1.2 1.15^L0 0.1 0.2 0.3 0.4 0.5

beam current I [nA]

Resolution vs Beam current

Ruscher, J. Appl. Phys, 2005

Gas injection systems (GIS)

Gas injection systems for material deposition (e.g. Pt, C)

- Local e⁻-beam or ion-beam induced material deposition by cracking of precursor gas
- Application examples:
 - Protective layers against ion beam damage (cross sectioning, preparation of TEM lamella, ...)
 - Attachment of micro- and nanoobjects (e.g. transfer of TEM lamella)

Platinum deposition with the electron/ion beam

Precursor for deposition: Metallorganic complex

HRTEM of deposition layers

The Deposition is different from the real metal!

Ion beam induced deposition

Schweizer, unpublished work, 2014

Comparison between ions and electrons

	Electron	Gallium ⁺ lon
Mass:	5,49 x 10 ⁻⁴ u	69.72 u (factor of 125000x)
Charge:	-1	+1
Velocity at 30 keV:	1x10 ⁸ m/s	2.8x10 ⁵ m/s (factor of 0.0028)
Wavelength at 30 keV:	7 pm	0.02 pm
SE yield at 20 keV:	0.5-0.75	1-2

Both electrons and ions are charged particles but ions are much heavier! The detailed interactions of ions with matter have to be considered

Ion Interactions with solids

Ion-solid interactions can be understood with a collision cascade

Volkert et al. MRS Bulletin ,Volume 32 , May 2007

Signals and Imaging contrast

•Emitted signals:

- Secondary electror
- Secondary ions
- Backscattered ions
- Ionoluminescence

Commonly used Signals for Imaging

Image contrast influences similar to SEM: Topography, Atomic weight, Crystal orientation – But not diffraction

Volkert et al., MRS BULLETIN, VOLUME 32, 2007

Simulation of many ion paths

Monte Carlo simulations can give good statistical values for ion ranges, implantation depth and sputtering yield

Simulations performed with SRIM (http://www.srim.org)

Scanning Electron & Ion Microscopy

Depth /nm

Radial range /nm

Comparison of cascades for different projectiles

Collision cascade simulated with MD

30 keV Xe ion irradiation of Au

K. Nordlund, 2008

Zone of **plastic flow** generated in the center of the collision cascade! FIB induced **damage!**

Damage in real scenarios

The FIB damage depends on:

- Milling parameters
- Sample chemistry

Rule of Thumb: 1 nm damage / kV

Metals:

- Dislocation loops
- Point defects
- Implanted ions

Idrissi, Microsc. Microanal, 2011

Semiconductors:

- Amorphization
- Implanted ions
- Point defects

Mayer, MRS Bulletin, 2007

Polymers:

- Distorted morphology
- Ion implantation
- Damage due to heating

Kim, Ultramicroscopy, 2011

Scanning Electron & Ion Microscopy

Effects of ion induced damage

Example: Change of the mechanical Properties of Molybdenum

Stress-strain curves for Mo Pillars

FIB induced damage has to always be considered!

Shim, Acta Materialia, 2008

Reducing FIB damage

Influence factors:

- Decreasing accelerating voltage
- Post process with light/low-energy ions
- Chemical etching
- Thermal annealing

Only certain methods work. FIB damage remains a challenge!

Kiener, Phil. Mag., 2012

Scanning Electron & Ion Microscopy

FIB milling in practice

There are many parameters for milling:

- Ion current
- Acceleration voltage
- Pattern shape
- Pattern size
- Dwell time/ Number of scanning passes
- Overlap/Pitch
- Total dose
- Defocus
- Scan direction

Every parameter influences the final result significantly!

The sample properties are equally as important as beam properties!

Tseng, J. Micromech. Microeng. 14, 2015

Influence of the acceleration voltage

5 keV

2 keV

Beam "Tail" becomes more pronounced

Sputter yield goes down. Pattern quality suffers! But: less beam damage!

Influence of the beam overlap

Example: Striations in nanoporous gold caused by insufficient beam overlap

Influence of Milling passes

Influence of the sample material

Volkert et al., MRS BULLETIN, VOLUME 32, 2007

Patterning is strongly influenced by the **microstructure** and **orientation** of the sample.

Gianuzzi, Introduction to Focused Ion Beams, 2005

Curtaining

Severe case of curtaining

Bryce Canyon, Jean-Christophe Benoist, CC

Typical curtaining in a cross-section

Curtaining depends on:

- Surface-curvature
- Local density
- Heterogeneous sputter yield
- Beam parameters

Similar process in erosion: Cheminée de fée or Hoodoo

TEM sample preparation - Overview

TEM sample preparation: lift-out movie

Scanning Electron & Ion Microscopy

TEM sample preparation

Epitaxial growth of PbSe quantum dots on MoS₂ nanosheets

J. Schornbaum et al., Adv. Funct. Mater. (2014)

Scanning Electron & Ion Microscopy

1 µm

TEM characherization

Nanomechanics

Micropillars

Uchich, Science, 2004

Micro-cantilevers

T. Przybilla, diploma thesis

Tensile Specimen

T. Przybilla, unpublished work, 2015

\rightarrow Analysis of the mechanical properties at the nano scale

Micropillar compression tests with local strain mapping

Nanoporous gold

Compression of layered crystals

3D EBSD/EDX

3D EBSD/EDX

EBSD-derived images at two different depths

50 mm x 50 mm 40 slices à 1.7 mm

3d-reconstruction of individual grains

West and Thomson (2009)

Questions?

