2D Materials Research in LMN

Transfer of micromechanically exfoliated MoS₂ onto TEM-grids for defect characterization 25.11.2020

Charles O. Ogolla, Björn Schäfer. Julian Müller & Benjamin Butz

Outline

- 1. Introduction
 - i. Defects in 2D transition metal dichalcogenides (TMDCs)
- 2. Defects characterization of (extended) defects
 - i. <mark>Raman</mark>
 - ii. TEM
- 3. Transfer to TEM grids, the case of MoS_2
 - i. Quantifoil[®] grids
 - ii. Steel grids
 - iii. Si_3N_4

2D materials: (X-M-X) TMDs

 MX_2 (M = Mo, W; X = S, Se) structural polytypes

\rightarrow Confers the material important properties: metallic, semiconducting character, and stability

MoS₂ common synthesis routes

Bottom-up

- Layer-by-layer growth
- Large scale production
- Limited quality

- High quality but low yield
- Large area flakes
- Pristine properties

C. Ogolla & B. Schäfer

2D Materials

2016.

Dislocations visualization using DF-TEM

Williams & Carter. Springer, 2009.

Dislocations in B(T)LG

Butz, et al. Nature. 505.7484 (2014): 533-537.

Invisibility criterion $\vec{g} \cdot \vec{b} = 0 \Rightarrow$ screw dislocations $\vec{g} \cdot \vec{b} \times \vec{u} = 0 \Rightarrow$ edge dislocations

STEM-ADF for defects characterization in monolayer CVD MoS₂

In Literature:

 $Point \ defects \ in \ CVD \ ML \ MoS_2^{2013)}.$

For extended defects:

- Dislocations, solitons, corrugations, Moiré lattices, stacking domain walls, ripplocations??
- Lack of comprehensive systematic characterization of extended defects in TMDCs

C. Ogolla & B. Schäfer

2D Materials

From exfoliation to TEM-grid

Transfer to Quantifoil[®] R1.2/1.3 grids

- Exfoliate
- Transfer onto 285 nm SiO₂/Si wafer
- Attach TEM grid with IPA
- Spincoat 5 wt% PC
- Peel off
- Thoroughly wash with chloroform

Quantifoil [®] R1.2-1.3 – Challenges

- Rupturing of the support membranes(high surface tension due to rapid uncontrolled solvent evaporation.
- Controlled by slow drying between solvent processes (critical point dryer)
- 5-10 % rupturing even when slow-dried

C. Ogolla & B. Schäfer

2D Materials

DF TEM contrast variation from different reflexes

- Regular dense dislocation networks
- Rotational Moiré networks

- Corresponding diffraction patterns
- Exciting reflexes under the 2-beam condition (non-trivial)
- Detailed dislocations characterization in few layer/bilayer MoS₂

Coming

Dealing with the contamination!!

- Hydrocarbon contamination
 - PC
 - IPA
- Quantifoil adsorbed contaminants from ambient air
- Polymer residues: Tape, PC

C. Ogolla & B. Schäfer

Transfer to TEM grids option 2: Transfer to stable grids

- Direct exfoliation first try
- Challenge in milling (here 50 μm thick)
 - Further grinding
 - Dimpling
- \rightarrow Promising initial findings w.r.t sample cleanliness

C. Ogolla & B. Schäfer

What's new!!!

- 8 µm
- 16 (± 2) µm stainless steel grid with a 3 mm circular frame
- Ø of the holes is 8 μ m, pitch 10 μ m
- 12 x 12 raster
- Solvent resistant
- Can be plasma-cleaned
- Background is C-free
- 7 minutes per hole milling time
- Backing at higher temperatures possible

Transfer to TEM grids : Stamping on Si₃N₄ membranes

- Solvent-free transfer
- PDMS-based dry transfer
- ightarrow Minimize introduction of impurities

THANK YOU FOR YOUR ATTENTION !!!