

GaAs substrate

Graphene and its conductivity

- Resonance condition: $L = \frac{\lambda_{SPP}}{2} = \frac{\pi}{k_{SPP}}$
- Plasmon dispersion relation: $\frac{1}{\sqrt{k_{SPP}^2 \frac{\omega^2}{c^2}}} + \frac{\varepsilon}{\sqrt{k_{SPP}^2 \varepsilon\frac{\omega^2}{c^2}}}$

Anwar, et al. Digital Communications and Networks, 2018. 4(4), 244-257.

Chemical potential (μ_c)

Tuned by bias voltage or doping

 $\frac{\sigma(\omega\mu_{c}\tau)}{\omega\epsilon_{0}}$

- Determines number of n & p in antenna
 Relaxation time (τ)
- Average life time of charges
- Determined by graphene quality

For functional antenna \rightarrow large $\mu_c \& \tau$

→ Challenge: high-quality graphene!

Structure of THz Antenna

Dipole antenna

- GaAs substrate (E_g = 1.42 eV)
- Conduction lines & contact: Cr / Au
- Two graphene patches

- Supports SPPs in THz band (0.1 10 THz)
- Graphene SPP waves tuned by doping
- Design/shape of graphene antennas

Mechanical exfoliation

Advantages

- Monocrystalline Graphene
- Defect-free
- \rightarrow Cleanliness, high conductivity

Challenges

- Low yield
- Non-deterministic
- Small and irregular flakes

Parameters:

- Graphite source
- Tape (Nitto, Tesa)
- Force, speed, direction applied
- Number of subsequent exfoliations

Freire Soler, Doctoral dissertation, 2014.

https://lmn.mb.uni-siegen.de/

Challenges of mechanical exfoliation

- Multiple subsequent exfoliations
- 100 °C for 1 min
- → Small, irregular & thick flakes

Challenge \rightarrow Residue removal

Tape residue removal

- 10 min in acetone
- Blow dried with N₂
- \rightarrow Cleaner surface & flakes remain

Exfoliation of large area graphene flakes

- Less number of subsequent exfoliations
- 75 °C for 3 min
- \rightarrow Clean, thin & bigger flakes

Thickness determination using contrast spectra

- Model based on the Fresnel law
- White light source and no filter

Contrast of graphene on SiO₂/Si

Thickness determination using contrast spectra

Intensities with ImageJ

Contrast equation

$$C = \frac{I(n_1 = 1) - I(n_1)}{I(n_1 = 1)}$$

Number of layers

 $C = 0.0046 + 0.0925N - 0.00255N^2$

Ni, et al. Nano letters, 2007, 7(9), 2758-2763.

Raman spectroscopy

- No D peak (1350 cm⁻¹)
- G' band single Lorentzian profile
- FWHM 22.3 cm⁻¹
- *I_G/I_G′* (0.37)
- \rightarrow Typical values for defect-free, ME graphene

- 532 nm laser
- 1200 l/mm grating
- 600 nm center wavelength

All-dry transfer method: Transfer tool

Pick up technique of flakes

Pick up technique of flakes

Selection of graphene on SiO₂/Si substrate

Challenges

- PC coating would break
- PDMS sticked to the substrate
- \rightarrow Parameter optimization

iii. Pick-up

Pizzocchero, et al. Nature communications, 2016, 7(1), 1-10.

Visibility of graphene/graphite on GaAs substrate

Flake on antenna (Transfer OM)	Thin flake on PDMS
	1601.66 Sample Si-GR01 Fitted plot	<u>100 μm</u>
2 <u>00 μm</u> High contrast at contact with Au	^{2459.17} 1400 1600 1800 2000 2200 2400 2600 2800 Raman shifts/ cm ⁻¹	Flake on antenna (Transfer OM)
Glass slide PDMS Flake T0°C SiO ₂	 Extremely low contrast on GaAs Raman measurements required 	<u>50 μm</u>

Outlook

- Raman spectroscopy mapping
- Rapid optical thickness using contrast
- Correlation of contrast and thickness on GaAs
- Complimentary techniques (AFM)
- Correlation of contrast and thickness on PDMS

Acknowledgements

Prof. Benjamin Butz M.Sc. Charles Ogolla LMN group members

Prof. Peter Haring Bolívar Institute of High Frequency and Quantum Electronics

Prof. Mario Agio Laboratory of Nano-Optics

