In-situ-Biegeversuche

PRÄSENTATION IM RAHMEN DER BACHELORARBEIT VON FLORIAN BAGSIK

Motivation

Problem:

Die Modelle für das Werkstoffversagen durch Dehnung sind zu konservativ ausgelegt. D.h. die Werkstoffe werden nicht optimal ausgenutzt.

Lösungsansatz:

Dehnungen von verschiedenen Werkstoffen unter Biegebeanspruchung in-situ im REM messen, um Kennwerte für ein mögliches Werkstoffversagen entwickeln zu können.

Was fehlt noch?

- Eine ergonomische, Steuerung für die Biegemaschine
- Ein mathematisches Modell für die Wegmessung und den erreichten Biegewinkel
- Eine Kompensationsberechnung zur Erhöhung der Messgenauigkeit.
- Ein Messverfahren zur Dehnungsbestimmung

Inhalt:

- Korrektur und Modellierung der Wegmessung
- Entwicklung der Biegemaschinensteuerung
 - Vergleich des Funktionsumfangs "alt" gegen "neu"
 - > Ergonomische Gestaltung der Steuerung
- Mathematische Modellierung des Biegevorgangs
 - > Berechnung des Biegewinkels
 - Kompensationsberechnung durch die Beanspruchung des Biegestempels

In-situ-Biegeversuche

- Auswahl des Detektors
- Versuchsauswertung über GOM Correlate (digitale Bildkorrelation)
- Versuchsauswertung über ImageJ (manuelle Dehnungsmessung)
- Fazit

Korrektur und Modellierung der Wegmessung

4

Korrektur und Modellierung der Wegmessung

- Die Position des Biegekopfes ist bei der Überwachung der Biegemaschine und des Biegeversuchs die zentrale Messgröße.
- Die Position wird über einen induktiven Wegaufnehmer seitlich vom Biegekopf bestimmt

Problem:

Der ursprüngliche Wegaufnehmer lieferte falsche Werte.

Korrektur und Modellierung der Wegmessung

Ursache für die falschen Messwerte:

- Ausgabespannung des Wegmessers lag außerhalb der zulässigen Eingangsspannung des A/D-Wandlers von ± 5V
- Zusammenhang zwischen Spannung und Weg falsch dargestellt

<u>Lösung:</u>

- → Verstärkung der Messelektronik neu justiert
- Modellierung des Zusammenhangs von Spannung und Weg

Modellierung der Wegmessung

Mit dem Messschieber ermittelte Messwerte:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
U _i [V]	4,94	4,32	3,7	3,23	2,44	1,81	1,14	0,54	-0,04	-0,71	-1,24	-1,96	-2,6	-3,19	-3,85	-4,42	-4,98
Y _i [mm]	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8

Berechnung der Regressionsgerade gemäß der Summe der kleinsten Quadrate:

$$f(U) = b * U + a \qquad b = \frac{\sum_{i=1}^{n} U_i * Y_i - n * \overline{U} * \overline{Y}}{\sum_{i=1}^{n} U_i^2 - n * \overline{U}^2} \qquad a = \overline{Y} - b * \overline{U} \qquad \overline{U} = \frac{\sum_{i=1}^{n} U_i}{n} \qquad \overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

Modellierung der Wegmessung

Berechnung der Regressionsgerade gemäß der Summe der kleinsten Quadrate:

Entwicklung der Biegemaschinensteuerung

Vergleich des Funktionsumfangs

Alte Steuerung

10

Manuelle Steuerung

- Senken des Biegekopfs mit geregelter, einstellbarer Geschwindigkeit.
- Kontinuierliche
 Protokollierung der von
 Kraft Motorspannung, Zeit
 und Position bis zum
 Beenden der Software

Vergleich des Funktionsumfangs

11

Neue Steuerung

Manuelle Steuerung Doch Joch Toth Noth Kater Ehr Doch Doch Doch Doch Doch Doch Doch Doch Doch	Arting Claver Arting C	im im im im im im
Position anfahren Position anfahren	NOT MACK THE OR INTERNAL	
Automatikmodus Serie forgen Geschingen Pause Pause Pause Vieter	"Soll / Ist"-Weg Diagramm	m mm to

Manuelle Steuerung mit einstellbarer Geschwindigkeit

- Automatisches Anfahren und Stoppen beliebiger Positionen
- Automatisches Anfahren und Stoppen beliebiger Prüfkräfte
- Geregeltes Senken des Biegekopfs mit einstellbarer Geschwindigkeit
- Pausieren und Wiederaufnahme des geregelten Senkens

Vergleich des Funktionsumfangs

12

Neue Steuerung

Manuelle Steuerung Image: book Notice Notice Notice Notice Note <	Atlang Cigare Nedeskateda	0,00000 N Watt Bregesterget 0,00000 V Scarrang Wegandenter 000000000 Lufter das Verscha 0,80000 V Lufter das Verscha	4,0000 mm Tar Wag 0,0000 mm -Sar Wag - 3,40364 mm Register ar: 2,99305 mm Tar Wag ses Scietts
Position anfahren Position anfa	HOT MACK THE COLOR		
Automatikmodus 5	"Soll / Ist"-Weg Diagramm	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Weg" Diagramm

Senken des Biegekopfes mit beliebiger Schrittweite

Protokollierung von Kraft, Motorspannung, Zeit, Position und Schrittweite bis zum Stopp des Antriebs und Ende des Versuchs.

Not-Aus

Diagrammplotter zur Versuchsüberwachung

Richtung FI0 Endlage
Auf Ab Oben Unten
Motor EIN Ein Fl2 Start
Aufnahme
Kraft AO 0,000 V
Wegensor A1 0,000 V 0,00 mm
Geschwindigkeit Stopuhr Soll Weg
10 00:00:00 ^{:000} 00,00 mm
um/s
Procession (Construction)
Regeldifferenz Spannung_DAC0

Ergonomische Gestaltung der Steuerung

13

Ergonomische Softwaregestaltung

Grundlage für die
Entwicklung einer
ergonomischen
Benutzeroberfläche
gemäß DIN EN ISO
9241-110

DIN EN ISO 9241-11

Richtung HU Endlage
Auf Ab Oben Unten
Motor EIN Ein Fl2 Start
Aufnahme
Kraft AO 0,000 V
Wegsensor A1 0,000 V 0,00 mm
leschwindigkeit Stopuhr Soll Weg 10 ↓ 00:00:00 :000 00,00 mm μm/s

 Beschriftung der Anzeigen und Bedienelemente erfolgt ohne feste Regel

Richtung FI0-	Endlage
Auf Ab	Oben Unten
Motor EIN Ein Fl2	Start
	Aufnahme
Kraft 0,000 V	
Wegtensor A1 0,000 V	0,00 mm
eschwindigkeit Stopuhr	Soll Weg
10 , 00:00:00 ^{:000} µm/s	00,00 mm
Regeldifferenz	pannung_DAC0
Regler 0,000 mm	0,0 V

- Gruppierung der Elemente ohne inhaltlichen und funktionellen Zusammenhang.
- Bedienelemente und Anzeigen sind nicht eindeutig zu unterscheiden.

Richtung FI0	Endlage
Auf Ab	Oben Unten
Motor EIN Ein Fl2	Start
	Aufnahme
Kraft AO 0,000 V	
Wegsensor A1 0,000 V	0,00 mm
Wegensor A1 0,000 V eschwindigkeit Stopuhr 10 , 00:00:00:000 µm/s	0,00 mm Soll Weg 00,00 mm

Messwerte werden nicht zweckmäßig dargestellt. Volt statt Newton für die auf den Biegestempel wirkende Kraft

Richtung FI0 Endlage
Auf Ab Oben Unten
Motor EIN Ein Fl2 Start
Aufnahme
Kraft 0,000 V
Wegtensor A1 0,000 V 0,00 mm
eschwindigkeit Stopuhr Soll Weg
Regeldifferenz Spannung_DAC0 Regler 0,000 mm 0,0 V

- Anzeigen nicht beschriftet
- Zufällige Farbschema ohne Berücksichtigung deren Bedeutung.
 Rot = Gefahr Gelb = Achtung
 - Grün = Los, keine Gefahr

Vergleich des Bedienaufwand

Biegemaschinensteuerung

20

Steuerung bei Übernahme des Projekts

Neugestaltung der Steuerung

Vergleich des Bedienaufwand

Bedienaufwand zum Starten eines Versuchs Fahrtrichtung

Antrieb einschalten

Geschwindigkeitsregelung aktivieren

Protokollierung der Messwerte

Fazit: Ein Tastendruck erfüllt alle notwendigen Befehlen und die Messung startet automatisch

Vorstellung der Steuerung

- Funktionen werden in Gruppen zusammengefasst.
- Beschriftung gleichbleibend unter dem Bedienelement oder der Anzeige.
- Einheitliches Farbschema.
 - Rot = Stopp

Blau = aktiv, Funktion startet Motor wird nicht.

Gelb = Achtung

Grau = neutral, optional

Grün = Motor startet

Unterscheidbare Bedienelemente mit eindeutiger Funktion.

Vorstellung der Steuerung

- Informationen eindeutig, gebündelt und immer am selben Ort.
- Diagramme zur Überwachung des Versuchs.

Not-Aus in Signalfarben, um im Gefahrfall schnell reagieren zu können.

Entwicklung der Piktogramme

Ziele:

- Unterscheidbarkeit
- Wenn möglich aus dem Alltag bekannt
- Im Kontext der Steuerung eindeutig in ihrer Funktion und notwendigen Interaktion
- Und auch ohne Sprachkenntnis selbsterklärend

Informationsdarstellung

- Die dargestellten Informationen sind auf ein notwendiges Minimum reduziert.
- Nicht benötigte Informationen werden im Rahmen der Möglichkeiten der Software ausgeblendet.

Berechnung des Biegewinkels Beta

Berechnung des Biegewinkels Beta

Die Schenkel der Biegeprobe bleiben starr.

- Die Dicke der Probe bleibt während des Versuchs konstant.
- Die Probe berührt die Auflager in Form eines Linienkontakts.

Berechnung des Biegewinkels Beta

Die Auflager, sowie der Bogen des Biegestempels sind perfekt rund mit bekannten Radien und nicht elastisch.

28

- Der Ursprung des Koordinatensystems liegt im Bogenmittelpunkt des Biegestempels.
- Die beiden Auflager besitzen nur einen Freiheitsgrad und können sich nur parallel zur y-Achse bewegen.
- 8. Die Position des Biegestempels bleibt konstant.

Berechnung des Biegewinkels Beta

Koordinaten des Berührpunkts des linken Auflagers mit der Probe

$$Y_{S_{1;2}} = -\frac{1}{2} \frac{\left(-2_{Y^{3}} + 2_{Y} R_{Ges}^{2} - {}_{2Y} X^{2}\right)}{\binom{M_{Auf}}{Y_{M_{Auf}}^{2} + X_{M_{Auf}}^{2}}} \mp \sqrt{\left(\frac{1}{2} \frac{\left(-2_{Y^{3}} + 2_{Y} R_{Ges}^{2} - {}_{2Y} X^{2}\right)}{\binom{M_{Auf}}{Y_{M_{Auf}}^{2} + X_{M_{Auf}}^{2}}}\right)^{2} - \frac{\frac{Y^{4}}{M_{Auf}} - 2Y^{2}}{\binom{M_{Auf}}{M_{Auf}} - 2Y^{2}} R_{Ges}^{2} + R_{Ges}^{4} - R_{Ges}^{2} + \frac{Y^{2}}{M_{Auf}} X^{2}}{\binom{Y^{2}}{M_{Auf}} + \frac{Y^{2}}{M_{Auf}} X^{2}}}$$

$$X_{S_{1;2}} = \sqrt{R_{Ges}^2 - (Y_{S_{1;2}} - Y_{M_{Auf}})^2 + X_{M_{Auf}}}$$

Biegewinkel in Abhängigkeit des Berührpunktes:

$$\alpha = \arctan \frac{\sqrt{(Y_{S_{1;2}})^2}}{\sqrt{(X_{S_{1;2}})^2}} \qquad \beta = 2\alpha = 2\arctan \frac{\sqrt{(Y_{S_{1;2}})^2}}{\sqrt{(X_{S_{1;2}})^2}}$$

Problem:

Die Druckbeanspruchung des Biegestempels führt zu dessen elastischer Stauchung. Die seitlich gemessene Position des Biegekopfes lässt sich daher nur eingeschränkt auf den Biegewinkel der Probe übertragen.

Lösung: Kraftabhängige Kompensationsfunktion der Biegekopfposition

Stauchung in Abhängigkeit der Kraft

$$\varepsilon = \frac{\Delta l}{l} = \frac{\sigma}{E} = \frac{F}{A * E} \quad \Leftrightarrow \quad \Delta l = l * \varepsilon$$

Die Querschnittsfläche A ist abhängig von der Höhe y.

→ Unterteilung des Biegestempels in fünf Teilabschnitte

$$\Delta l_{ges} = \sum_{i=1}^{5} \Delta l_i = \sum_{i=1}^{5} \varepsilon_i * l_i$$

Aufteilung der Längenänderungen in geometrische Grundkörper:

$$\Delta l_1 = \varepsilon_1 * l_1 = \frac{\sigma(y_1) * l_1}{E} = \frac{F * l_1}{A(y_1) * E} \qquad f \ddot{u} r \ 0 \le y_1 \le 1$$

$$\Delta l_2 = \varepsilon_2 * l_2 = \frac{\sigma(y_2) * l_2}{E} = \frac{F * l_2}{A(y_2) * E} \qquad f \ddot{u}r \ 0 \le y_2 \le 13$$

$$\Delta l_3 = \varepsilon_3 * l_3 = \frac{\sigma(y_3) * l_3}{E} = \frac{F * l_3}{A(y_3) * E} \qquad f \text{ ür } 0 \le y_3 \le 2$$

$$\Delta l_4 = \varepsilon_4 * l_4 = \frac{\sigma(y_4) * l_4}{E} = \frac{F * l_4}{A(y_4) * E} \qquad f \text{ ür } 0 \le y_4 \le 10,5$$

$$\Delta l_5 = \varepsilon_5 * l_5 = \frac{\sigma(y_5) * l_5}{E} = \frac{F * l_5}{A(y_5) * E} \qquad f \text{ ür } 0 \le y_5 \le 2$$

$$\Delta l_1 = \varepsilon_1 * l_1 = \frac{F * l_1}{A(y_1) * E} = \int_0^1 \frac{F * l_1}{A(y_1) * E} dy_1 = \frac{F * l_1}{2 * z * E} \int_0^1 \frac{1}{\sqrt{r_1^2 - y_1^2}} dy_1$$

$$\Delta l_2 = \frac{F * l_2}{2 * x_2 * z * E} = \frac{F * l_2}{2 * z * 1 mm * E}$$

$$\Delta l_3 = \frac{F * l_3}{2 * z * E} \int_0^2 \frac{1}{3 - \sqrt{r_2^2 - y_3^2}} dy_3$$

$$\Delta l_4 = \frac{F * l_4}{2 * x_4 * z * E} = \frac{F * l_4}{2 * 4,75 \ mm * z * E}$$

$$\Delta l_5 = \frac{F * l_5}{r_3^2 \arccos\left(1 - \frac{r_3 - 7}{r_3}\right) - (r_3 - (r_3 - 7)) * \sqrt{2 * r_3 (r_3 - 7) - (r_3 - 7)^2} * E_3}$$

Zwischenergebnis:

$$\Delta l_{ges}(F) = \frac{F}{E} * \left(\left(\frac{1}{2*z}\right) * \left(l_1\frac{\pi}{2} + l_2 + l_3 * 1.5156804791 + l_4 * \frac{4}{19}\right) + l_5 * 0,00040597 \ mm^{-2}$$

$E_{Stahl} = 200000 \frac{N}{mm^2}$	$l_1 = 1 \ mm$
$l_2 = 13 mm$	$l_3 = 2 mm$
$l_4 = 10,5 \ mm$	$l_5 = 2 mm$
	z = 9 mm

Stauchung des Biegestempels in Abhängigkeit von der Belastung:

$$\Delta l_{ges}(\mathbf{F}) = F * 5,507582932 * 10^{-6} \frac{mm}{N}$$

Auswahl des Detektors

36

Auswahl des Detektors

Vergleich der Abbildungsqualität in Abhängigkeit des Detektors und der Bildparameter

Stahl 1.4301, *TLD*, 2048 x 1886, 10 μs, *500-fache Vergrößerung*

Stahl 1.4301, ETD, 2048 x 1886, 10 μs, 500-fache Vergrößerung

Stahl 1.4301, *ETD*, *1024* x *943*, *30* μs, *500-fache Vergrößerung*

Auswahl des Detektors

Stahl 1.4301, ETD, 1024 x 943, 30 µs 500-fache Vergrößerung

Fazit:

ET Detektor mit folgenden Parametern ist der beste Kompromiss zwischen Abbildungsqualität und Erzeugungsdauer

Detektorparameter:

Detektor:	ET
Strahlenstrom:	22 nA
Beschleunigungsspannung:	30 kV besser 5 kV
Bildauflösung:	1024 x 943 Pixel
Abtastgeschwindigkeit:	30 µs

Auswahl des Detektors

Aluminium 5182, ETD, 1024 x 943, 30 μs 2000-fache Vergrößerung

Fazit:

ET Detektor mit folgenden Parametern ist der beste Kompromiss zwischen Abbildungsqualität und Erzeugungsdauer

Detektorparameter:

Detektor:	ET
Strahlenstrom:	22 nA
Beschleunigungsspannung:	5 kV
Bildauflösung:	1024 x 943 Pixel
Abtastgeschwindigkeit:	30 µs

Biegeversuche mit Stahl und Aluminium

40

Biegeversuche

Aluminium 5182 (2000 x)

Stahl 1.4301 (500 x)

Dehnungsbestimmung mit GOM Correlate

42

Dehnungsbestimmung von Aluminium mit GOM Correlate

- Technische Dehnung (vertikal)
- Analyse von Bild 10 bis 148.
- Variable Schrittweite
- Fähnchen dienen zur Auswertung und Vergleich mit ImageJ

Vergleich der Dehnung bei Alu in Abhängigkeit des Referenzbildes

Dehnung in Bild 148 ab Stufe 1

Dehnung in Bild 148 ab Stufe 10

Dehnungsbestimmung von Stahl mit GOM Correlate

- Technische Dehnung (vertikal)
- Analyse von Bild 10 bis 96
- Aquidistante Schrittweite
 0,08 mm
- Fähnchen dienen zur Auswertung und Vergleich mit ImageJ

45

Vergleich der Dehnung bei Stahl in Abhängigkeit des Referenzbildes

[%]

60.000

52.500

45.000

37.500

30.000

22.500

15.000

7.500

0.000

10.000

Dehnung Stahl in Bild 2 ab Stufe 1

Dehnung Stahl in Bild 96 ab Stufe 10

Fazit: Dehnungsbestimmung mit GOM Correlate (1)

Dehnungsbestimmung ab Bild 1

- Löcher mit fehlenden Informationen entstehen bei der Aluminiumprobe
- Die Stahlprobe lässt ab Bild 2 keine Analyse mehr zu
- Positionen der Messfähnchen springen
- Messwerte zum Teil unplausibel (Bereiche mit starker Stauchung)

Dehnung Alu in Bild 148 ab Stufe 1

47

Fazit: Dehnungsbestimmung mit GOM Correlate (2)

Dehnungsbestimmung ab Bild 10

- Durchgehende Analyse bei Stahl und Aluminium möglich. Keine Löcher
- Positionen der Messfähnchen bleibt größtenteils erhalten
- Plausible Dehnungsdarstellung und Messwerte

Dehnung Alu in Bild 148 ab Stufe 10

48

Dehnungsbestimmung mit ImageJ

Manuelle Dehnungsberechnung mit ImageJ

- > 9-10 Punktpaare pro Versuch
- Verteilt auf die gesamte Bildfläche
- Abstände zwischen zwei markanten Punkten auf jedem Bild gemessen
- 864 Messungen f
 ür die Stahlprobe
- 1480 Messungen f
 ür die Aluminiumprobe

50

Messpunkte Aluminium Bild 1

Bestimmung der Dehnungen von Alu (ImageJ)

Technische Dehnung in y-Richtung in Abhängigkeit der Biegekopfposition

Bestimmung der Dehnungen von Alu(ImageJ)

52

Technische Dehnung in y-Richtung in Abhängigkeit des Biegewinkels

Bestimmung der Dehnungen von Stahl (ImageJ) 53

Technische Dehnung in y-Richtung in Abhängigkeit der Biegekopfposition

-10

Bestimmung der Dehnungen von Stahl (ImageJ) 54

Technische Dehnung in y-Richtung in Abhängigkeit des Biegewinkels

Vergleich GOM Correlate und Imagej

Vergleich der Dehnungen GOM Correlate und 56 ImageJ Aluminium

Dehnung Alu in Bild 148 ab Stufe 10

Bestimmung der Dehnungen von Stahl (ImageJ)

Dehnung in y-Richtung bezogen auf

Teechnische

Dehnung Stahl in Bild 96 ab Stufe 10

57

— Messstrecke 10

— Messstrecke 5

Fazit

Dehnungsbestimmung mit Imagej:

- Sehr aufwendiges Verfahren
- > Die Auswertung bei Stahl schwieriger als Aluminium.
- Nur an markanten Punkten möglich.
- Orientierung an Korngrenzen führt zu großen Schwankungen
- Hilfreich könnten Markierungen durch Markerpartikel sein.

Fazit

Dehnungsbestimmung mit GOM Correlate:

- Eine schlechte Aufnahmen Qualität und großer Veränderungen zwischen den einzelnen Bildern können nicht ausgewertet werden.
- Messpunkte bleiben mit wenigen Ausnahmen auf einer Geraden.
- Zonen großer Dehnungen werden als solche dargestellt.
- Einschätzungen bezüglich der Genauigkeit nicht möglich.
- Hilfreich könnten Markierungen durch Markerpartikel sein.

Fazit

60

Ergebnisse der Dehnungsbestimmung:

- Es war kein Werkstoffversagen erkennbar.
- Aluminium zeigt wesentlich inhomogeneres Dehnungsverhalten als Stahl
- 30,5 bis 61 % technische Dehnung (ImageJ) bei Aluminium 5182. Laut GOM Corrolate über 98 % in stark gedehnten Bereichen
- 29,3 bis 50 % technische Dehnung (ImageJ) bei Stahl 1.4301 Laut GOM
 Corrolate über 57 % in stark gedehnten Bereichen.

Vielen Dank für die Aufmerksamkeit!

Dankeschön für die Unterstützung und Zusammenarbeit mit Prof. Dr. Benjamin Butz, Dr. Julian Müller, Dr. Yilmaz Sikalli, Dr. Rainer Steinheimer, Sebastian Weitz und dem gesamten Team des LMN Siegen.